Quantum Mechanics 2
Collegejaar:  20172018 

Studiegidsnummer:  4062QUME2 
Docent(en): 

Voertaal:  Nederlands 
Blackboard:  Ja 
EC:  5 
Niveau:  300 
Periode:  Semester 2 
Onderwijstijd in uren (excl. zelfstudie): 
140:00 uur 
 Wel Keuzevak
 Wel Contractonderwijs
 Geen Exchange
 Geen Study Abroad
 Geen Avondonderwijs
 Wel AlaCarte en Aanschuifonderwijs
 Geen Honours Class
Admission requirements
Quantum Mechanics 1, Classical Mechanics B, AN3na, LA2na
Description
This courses deepens the understanding of quantum mechanics by studying important quantum phenomena and applications of quantum mechanics. This comprises the study of indistinguishable quantum particles and their statistical distributions and the use of perturbation methods to understand the level structure of atoms. The details of the observed emission spectrum of hydrogen are inconsistent with the Bohr model and simple analytical solutions of the Schrödinger equation. Most notably, the so called spinorbit coupling gives rise to small shifts and splittings of the Bohr levels. The coupling of an atom to an external oscillating field gives rise to stimulated emission and can be understood in the framework of timedependent perturbation theory. The ground state of Helium and simple molecules will be discussed using the variational principle.
Course objectives
After the course the student should be familiar with the following concepts and should be able to apply these concepts to perform simple calculations.
• Quantum statistical description of indistinguishable particles
• FermiDirac, BoseEinstein and Planck distribution
• Understanding of the strucuture of atoms and periodic table using hydrogen orbitals
• Density of states
• Timeindependent perturbation theory
• Finestructure and hyperfinestructure of Hydrogen
• Influence of external magnetic field (Zeemaneffect) and electrical field (Starkeffect)
• Timedependent perturbation theory and application to twolevel systems
• Stimulated and spontaneous emission, Einstein A and B coefficeints, selection rules
• Variational principle: ground state of Helium and covalent bond
In addition the student is introduced tot he following concept
• Dirac equation
• Adiabatic principle
• Geometrical phase and the AharonovBohm effect
Timetable
Mode of instruction
Lectures, tutorials (exercise classes) and homework assignments
Course Load
Total course load 5 EC = 140 hours, of which 42 hours are spent attending lectures and tutorials (11x2 hours lectures + 10x2 hours tutorials). Approximately 50 hoursare needed to study the course material. The remiang 48 hours are spent on completing the assignments and preparing for the exam
Assessment method
Written exam with open questions.
The final grade is calculated using the grade of the exam and adding a bonus based on the homework assignments. To participate in the bonus all of the five homework assignments should be handed in. A final grade below 6 will be rounded to 5 if the grade for the written exam is insufficient (below 5.5).
There is an opportunity to retake the exam. In this case no bonus applies.
Blackboard
Course material is on blackboard
To access Blackboard you need your ULCNaccount Blackboard UL
Reading list
David J. Grifiths, Introduction to Quantum Mechanics, 2nd edition, ISBN 0131911759. This is the same book as used in the Quantum Mechanics 1 course.
Errata and a warning about incomplete international editions of the textbook can be found on the personal homepage of Divid Griffiths http://www.reed.edu/physics/faculty/griffiths.html
Contact
Contactgegevens Docent:Dr. M. de Dood (Michiel)
Maakt deel uit van  Soort opleiding  Semester  Blok 

Natuurkunde  Bachelor  2  
Natuurkunde en Sterrenkunde (dubbele bachelor)  Bachelor  2  
Natuurkunde en Wiskunde (dubbele bachelor)  Bachelor  2  
Sterrenkunde  Bachelor  2  
Sterrenkunde & Natuurkunde (dubbele bachelor)  Bachelor  2  
Sterrenkunde en Wiskunde (dubbele bachelor)  Bachelor  2 