Astronomical Relativity
Collegejaar:  20172018 

Studiegidsnummer:  4072ASTRE 
Docent(en): 

Voertaal:  Engels 
Blackboard:  Nee 
EC:  6 
Niveau:  300 
Periode:  Semester 1 
 Wel Keuzevak
 Wel Contractonderwijs
 Wel Exchange
 Wel Study Abroad
 Geen Avondonderwijs
 Wel AlaCarte en Aanschuifonderwijs
 Geen Honours Class
Admission requirements
Knowledge of calculus and linear algebra at the bachelor's level is required, as well as special relativity (although that subject is reviewed at the beginning of the course), and of classical mechanics, including its Lagrangian formulation. In terms of the Leiden curriculum, the student must have succesfully completed the first year, and in addition must have succesfully completed the courses Classical Mechanics B and Lineaire Algebra 2. Without this full set of prerequisites, enrolment will not be allowed.
Description
This course provides an introduction to the Theory of General Relativity, with a particular focus on its astrophysical applications. The course sidesteps the usual mathematical approach to the subject (based on tensor calculus), and instead starts from the metric as the crucial concept. Particular astrophysical applications that are discussed include black holes, the Universe, gravitational lenses and gravitational waves. The Einstein equation, which forms the overarching principle of these phenomena, is only introduced at the end of the course. The course uses a textbook following the same approach.
Course objectives
The course provides an introduction to the principle of General Relativity and its most common astrophysical applications, and serves as an introduction to master's level courses on the subject. Upon completion of this course the student should be familiar with the basic tenets of General Relativity, the concept of spacetime curvature and some of its mathematical tools, and the concept of metrics. The student should be able to handle and utilize the metrics commonly encountered in astrophysical situations, and using this approach, understand and analyze phenomena related to black holes, gravitational lensing, cosmology and gravitational waves.
Soft skills
In this course, students will be trained in the following behaviouroriented skills:
 Problem solving (recognizing and analyzing problems, solutionoriented thinking)
 Analytical skills (analytical thinking, abstraction, evidence)
 Structured thinking (structure, modulated thinking, computational thinking, programming)
 Critical thinking (asking questions, check assumptions)
 Creative thinking (resourcefulness, curiosity, thinking out of the box)
Timetable
See Schedules bachelor Astronomy 20172018
Mode of instruction
Lectures
Assessment method
Written exam, see Examination schedules bachelor Astronomy 20172018
Blackboard
Blackboard is not used for this course.
Reading list
Gravity. An Introduction to Einsteinâ€™s General Relativity, Hartle, ISBN 9781292039145 (required)
Registration
Register via uSis. More information about signing up for classes and exams can be found here. Exchange and Study Abroad students, please see the Prospective students website for information on how to register. For a la carte and contract registration, please see the dedicated section on the Prospective students website.
Contact information
Lecturer: Prof.dr. P. (Paul) van der Werf
Assistants: Natasha Wijers, DongGang Wang
Course website: Astronomical Relativity
Remarks
None
Maakt deel uit van  Soort opleiding  Semester  Blok 

Natuurkunde  Bachelor  1  
Natuurkunde en Sterrenkunde (dubbele bachelor)  Bachelor  1  
Natuurkunde en Wiskunde (dubbele bachelor)  Bachelor  1  
Sterrenkunde  Bachelor  1  
Sterrenkunde & Natuurkunde (dubbele bachelor)  Bachelor  1  
Sterrenkunde en Wiskunde (dubbele bachelor)  Bachelor  1 